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The Three-Step Master Equation: Class
of Parametric Stationary Solutions
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We examine the three-step master equation from the standpoint of the general solution
of the associated discrete Riccati equation. We report by this means stationary master
solutions depending on a free constant parameter, denoted by D, that should be negative
in order to assure the positivity of the solution. These solutions correspond to different
discrete Markov processes characterized by the value of D, which is related to specific
renormalizations of the transition rates of the chain of states.
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In general, the three-step population master equation is used by physicists in
many studies of diffusion processes of microscopic particles on one-dimensional
lattices (Derényi et al., 1998; Jauslin, 1990; Reyes and Rosu, 1999; Rosu and
Reyes, 1995), but this simple discrete equation has extensive and interesting
applications in other fields as well, most recently to Hubbell’s neutral theory in
ecology (McKane et al., 2000; Volkov et al., 2003). In the following, we shall use
a population interpretation. It reads

dpn

dt
= dn+1pn+1 − σnpn + bn−1pn−1, σn = bn + dn, (1)

where bn is the transition rate for the birth-type jump n → n + 1 and dn is the
death-type rate for the backward jump n → n − 1, while pn is the probability to
have n individuals at the instant t . Employing the initial conditions b−1 = d0 = 0,
the known stationary solution is (Gardiner, 1985)

P st
n = P0

(
n−1∏
j=0

bj

dj+1

)
, (2)
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where P0 is a scaling constant that through the probabilistic normalization condi-
tion can be written as (see, Gillespie, 1993)

P0 =

1 +

N∑
n=1

n−1∏
j=0

bj

dj+1




−1

.

We proceed now to show that stationary solutions which are different from
Equation (2) that are based on the general solution of the discrete Riccati equa-
tion connected to the master equation can be obtained. Indeed, performing the
transformation

yn−1 = Pn−1

Pn

+ 1 − σn

bn−1
, n �= 0, (3)

in Equation (1) leads to the following discrete Riccati equation

yn = bn−1ynyn−1 − bn−1

bn

(1 − σn+1)yn−1 + dn+1 + 1 − σn+1

bn

, (4)

with the particular solution

y0
n = 1 − bn+1

bn

. (5)

However, it is easy to check that one can write a more general solution of
Equation (4) as follows

y1
n = y0

n + fn

D − ∑n
k=0

fkbk+1

dk+2

, fn =
n∏

i=0

bidi+2

b2
i+1

, (6)

where D is a real constant.
Using simple discrete algebra, one can obtain the recurrence relationship

Pn+1 = Pn

(
yn + σn+1 − 1

bn

)−1

, (7)

leading to stationary solutions of the following form

Pn(D) = P̃0

n−1∏
i=0

bi

di+1


1 + fibi/di+1

|D| + ∑i
j=0

fj bj+1

dj+2
− fibi

di+1


 , (8)

where the normalization constant reads

P̃0 =

1 +

N∑
n=1

n−1∏
i=0

bi

di+1


1 + fibi/di+1

|D| + ∑i
j=0

fj bj+1

dj+2
− fibi

di+1







−1

. (9)
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Examining Equation (8) with normalization (9), we first notice that for D →
−∞ we recover the known case of stationary master solution with the common
normalization. In addition, we notice that the factor

1 + fibi/di+1

|D| + ∑i
j=0

fj bj+1

dj+2
− fibi

di+1




looks like a renormalization factor for the transition rates of the original stationary
Markov process. A reasonable interpretation of D depends on the specific applica-
tion and in general is related to initial conditions, boundary conditions or external
applied fields. In addition, for a physical solution one requires positivity implying

bi

di+1
≥ bi−1

di

.

This is a strong condition and in particular cases it could be relaxed.

(a) The most trivial case is bk = dk = const < 1, k = 0, . . . , n. This implies
P st

k = P0; the Riccati solution is yk = b−1 − 1. The D-dependent solution
will be

Pk = P̃

(
1 + k

D

)
, (10)

and with the normalization explicitly calculated

Pk = 1

n + 1

(
1 + k

D

1 + n
2D

)
. (11)

A plot of Pk for various values of the parameter D is shown in Fig. 1.
(b) For the asymmetric case we take bn = 1

2 (1 + ε), dn = 1
2 (1 − ε), q =

1−ε
1+ε

< 1, n = 0, . . . N , and the parametric solution reads

Pn = P̃0q
−n

n−1∏
i=0

(1 − q)(D + qi) + 1 − qi

(1 − q)D + 1 − qi
, (12)

and the normalization constant can be easily written down from
Equation (9). Plots for this case are displayed in Fig. 2.

(c) Various other cases are presented in Figs. 3–5 for exponential parametriza-
tions of the jump rates.

In summary, we report one-parameter stationary solutions of the three-step
master equation that are based on the corresponding discrete Riccati general solu-
tion. In the continuous case, the mathematical method we employ here corresponds
to Mielnik’s procedure in supersymmetric quantum mechanics (Mielnik, 1984).
The parameter of these solutions could be fixed in applications by initial/boundary
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Fig. 1. Pk(−1000), Pk(−2000) and Pk(−∞) for bi = di = const < 1 and n = 20.

conditions or through external perturbations of the underlying birth-death Markov
process.

It is well known that the stationary solution of the master equation of a
discrete Markov process is uniquely defined if the process contains only one
class of ergodic states. In this case, the stationary solution does not depend on the
initial condition. The discrete Riccati mathematical procedure leads to modified
transition rates and consequently to different stationary solutions that belong
to different master equations. Modifying the rates at the ends of the chain of
states corresponds to a probability current flow through the system, i.e., to a
driven system. Thus, the physical interpretation of this class of parametric master
solutions is that they are a specific type of current-carrying solutions that are
important non-equilibrium steady states in many mesoscopic and macroscopic
systems, such as Becker-Döring nucleation processes (see for example Wattis,
2004), or superconductivity, where as stated by Geller (1996), “it is now under-
stood that supercurrent-carrying states are in fact, metastable non-equilibrium
states . . . with an extremely long lifetime.” The later states are essential for
the tunable supercurrent of Josephson junction technology (Baselmans et al.,
1999).
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Fig. 2. Pn(−4) (—); Pn(−40) (· · ·); Pn(−∞) (– · –), all of them for ε = 0.02.

Fig. 3. Pn(−4) (—); Pn(−4000) (· · ·); Pn(−∞) (– · –) for bi = 0.1 + exp[−0.12 i]
and di = 0.1 + exp[−0.15 i].
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Fig. 4. Pn(−4) (—); Pn(−4000) (· · ·); Pn(−∞) (– · –), for bi = exp[−0.12 i1/2]
and di = exp[−0.15 i1/2].

Fig. 5. Pn(−4) (—); Pn(−4000) (· · ·); Pn(−∞) (– · –), for bi = 0.01+
exp[−0.15 i] and di = 0.01 + exp[−0.12 i].
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If, for example, we place us in a population (ecology) context, the difference
with respect to the original master equation is already at the level of the d0 rate. For
a finite D the rate d0 is not zero. Thus, for positive d0, one can interpret this rate as
an initial immigration rate, while for negative values as an initial emigration rate.
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